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Abstract
The complete integrability of a (2+1)-dimensional coupled nonlinear extension
of the reaction-diffusion (CNLERD) equation using the technique of
Painlevé(P)-analysis is investigated. Using the formalism of Weiss et al (1983
J. Math. Phys. 24 522), the arbitrariness of the expansion coefficients are
proved. Besides, following the Hirota’s formalism (Hirota R 1980 Direct
methods in soliton theory Soliton (Berlin: Springer)) combined to Weiss et al’s
methodology (Weiss et al 1984 J. Math. Phys. 25 13), the consistency of
the truncation is shown. Thus, without the use of Kruskal’s simplification, the
Bäcklund transformation (BT) of the equations is obtained via the truncation
procedure. Taking into account the arbitrariness of the expansion coefficients
in the foregoing truncation, a typical spectrum of localized coherent structures
may be unearthed. The scattering behavior of such structures is also
investigated.

PACS numbers: 02.30.Ik, 02.30.Jr, 05.45.Yv, 03.65.Ge

1. Introduction

Modern soliton theory may be widely applied in almost all the physics fields [1–10]. Owing
to the fact that the role played by integrable models in the soliton theory is important, to find
various integrable models may be one of the important problems. Some useful methods have
been recently developed in order to deal with these problems. For instance,
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• various finite dimensional Hamiltonian systems may be obtained from the symmetry
constraint equations of the (1+1)-dimensional integrable partial differential equations
[11–16];

• the constraints of some (2+1)-dimensional integrable equations [17–19] may lead to some
(1+1)-dimensional integrable models;

• using an asymptotical exact reduction method based on the Fourier expansion from some
known integrable equations [20–23], many integrable systems of the same dimensions as
that of the original models may be obtained;

• by means of some techniques such as the conformal invariance of the Schwartz of the
known integrable models [24], the deformation theory [25, 26], the general Virasoro
symmetry algebra [27–29], the (1+1)-dimensional strong symmetry [30–33], some types
of higher dimensional integrable models may be found;

• the ‘prolongation structure’ [34] which has been used in a (1+1)-dimensional reaction-
diffusion system by Beccaria and Soliani may be a powerful tool for obtaining some
essential properties of nonlinear integrable systems, but also may be helpful in generating
some (2+1)-dimensional integrable systems [35].

Furthermore, some powerful methods of investigation of the exact solutions of some (2+1)-
dimensional nonlinear partial differential (NLPD) equations, such as the ‘general projective
Riccati equation method’ (GPREM) [36, 37] and the ‘multilinear variable separation approach’
(MLVSA) [38], have been developed. The second method, that is the MLVSA, has been
extended to its ‘universal’ formula to a great number of (2+1)-dimensional NLPD equations
such as the asymmetric Davey–Stewartson equation [39], the dispersive long wave equation
[40], the Broer–Kaup–Kupershmidt system [41], among many others. One of the most
powerful methods to prove the integration of a model equation is the so-called P-analysis
[42, 43] which has been applied to many systems [44–47]. This method is also useful in
finding some exact solutions no matter whether the model is integrable or not [48]. One
of the major step of the MLVSA may be the P-analysis which may help generating some
arbitrary functions, useful in construction of quite rich localized excitations such as solitoffs,
compactons, ring solitons, breathers, instantons and others [49]. This method may also be
discussed in some other equations by investigating periodic-wave structures like periodic-
compacton interaction waves, periodic-kink interaction waves, etc [50].

Recently, while investigating an integrable (2+1)-dimensional (modified) Heisenberg
ferromagnet (HF) model [51] using the prolongation structure theory, Zhai et al [35]
have constructed its corresponding geometrical equivalent counterparts, such as the (2+1)-
dimensional nonlinear Schrödinger equation and the coupled (2+1)-dimensional integrable
equations, presented through the motion of Minkowski space curves endowed with an
additional spatial variable. These last coupled (2+1)-dimensional integrable equations may be
given by [35]

ψ̂ t + ψ̂xy − γ̂ ψ̂ = 0, φ̂t − φ̂xy + γ̂ φ̂ = 0, γ̂x + (φ̂ψ̂)y = 0, (1)

where ψ̂, φ̂ and γ̂ are physical observables and subscripts denote partial differentiation.
Another physical application of equation (1) has been pointed out by Duan et al [52]
while presenting equation (1) as a corresponding geometric equivalent (2+1)-dimensional
CNLERD equation of the integrable (2+1)-dimensional (modified) HF model. Even though
the prolongation structure has the merit that it is not only the covariant geometry theory,
but also a powerful way to obtain many properties such as BT, Lax pair, inverse scattering
transform, equation (1) may store another interesting fauna of exotic solutions depicted by
means of some interesting techniques such as the P-analysis, GPREM [36, 37] and MLVSA
[38], just to name a few. Thus, the analysis of the mathematical properties of equation (1)
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may deserve great interests. These properties may be summarized by the question of its
integrability and the construction of its exotic localized excitations followed by a survey of
their scattering behavior. In this paper, we aim to provide detail on the scattering properties
of such structures by means of the P-analysis.

The paper is organized as follows. In section 2, we present the P-integrability of
equation (1) using the formalism of Weiss, Tabor and Carnevale [42, 43]. In section 3, the BT
and Hirota’s bilinearization properties of this equation are investigated and it is shown that
equation (1) may be completely integrable. Following these results, in section 4, we construct
some interesting localized excitations, and we survey their scattering behavior. Finally, in
section 5, we end with a brief summary of the work.

2. P-integrability of the (2+1)-dimensional CNLERD equation

As usual, we take the following Laurent expansion of the functions ψ̂, φ̂ and γ̂ about the
singular manifold g as follows:

ψ̂ =
∞∑

k=0

ψ̂kg
k+α, φ̂ =

∞∑
k=0

φ̂kg
k+β, γ̂ =

∞∑
k=0

γ̂kg
k+ϑ . (2)

For the leading order analysis, we truncate the previous series given by equation (2) to the
zeroth order, and then replace them into equation (1). We may find only one possible branch

α = β = −1, ϑ = −2, (3)

and

ψ̂0φ̂0 = −2g2
x, γ̂0 = 2gxgy. (4)

From equation (4), one of the three functions ψ̂0, φ̂0 and γ̂0 may be arbitrary.
In order to obtain the recursion relations, we may substitute equations (2), (3) and (4)

into (1). We get

M̂kV̂k = T̂k, (5)

where M̂k is a square matrix, V̂k = (ψ̂k, φ̂k, γ̂k)
T and T̂k = (P̂k, Q̂k, Ûk)

T with

P̂k =
k−1∑
j=1

γ̂k−j ψ̂j − ψ̂k−2,xy − ψ̂k−2,t

− (k − 2)(ψ̂k−1gt + ψ̂k−1,xgy + ψ̂k−1,ygx + ψ̂k−1gxy), (6)

Q̂k =
k−1∑
j=1

γ̂k−j φ̂j − φ̂k−2,xy + φ̂k−2,t

− (k − 2)(−φ̂k−1gt + φ̂k−1,xgy + φ̂k−1,ygx + φ̂k−1gxy), (7)

and

Ûk = −
⎡
⎣k−1∑

j=0

(ψ̂k−j−1φ̂j )y + (k − 2)

k−1∑
j=1

ψ̂j φ̂k−j gy + γ̂k−1,x

⎤
⎦ . (8)

The matrix M̂k is given by

M̂k =
⎡
⎣A1k A2k A3k

B1k B2k B3k

C1k C2k C3k

⎤
⎦ , (9)
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with

A1k = k(k − 3)gxgy, A2k = 0, A3k = −ψ̂0,

B1k = 0, B2k = A1k, B3k = −φ̂0,

C1k = (k − 2)φ̂0gy, C2k = (k − 2)ψ̂0gy, C3k = (k − 2)gx.

(10)

Thus, the determinant �̂k of the matrix M̂k is given by

�̂k = k(k − 2)(k − 3)(k − 4)(k + 1)g2
yg

3
x. (11)

The resonances may then be found at

k = −1, 0, 2, 3, 4. (12)

The resonance at k = −1 corresponds to that of the singularity manifold g being arbitrary.
From the leading order analysis, we know that the resonance at k = 0 is satisfied identically

and one of ψ̂0, φ̂0 and γ̂0, is arbitrary.
For k = 1, ψ̂1, φ̂1 and γ̂1 are uniquely expressed as follows:

ψ̂1 = −2gxgt ψ̂0 + 2gxgyψ̂0,x + ψ̂2
0φ̂0,y/2 + ψ̂0,yg

2
x

4gyg2
x

,

φ̂1 = −2gxgyφ̂0,x + φ̂2
0ψ̂0,y/2 + φ̂0,yg

2
x − 2gxgt φ̂0

4gyg2
x

,

γ̂1 = −2gxy.

(13)

For k = 2, we get the following system,

2gxgyψ̂2 + ψ̂0γ̂2 = ψ̂0,t + ψ̂0,xy − ψ̂1γ̂1,

2gxgyφ̂2 + φ̂0γ̂2 = φ̂0,xy − φ̂0,t − φ̂1γ̂1,
(14)

provided

γ̂1,x + (ψ̂1φ̂0 + φ̂1ψ̂0)y = 0, (15)

holds, as it is actually the case. Therefore, one of ψ̂2, φ̂2 and γ̂2, is arbitrary.
For k = 3, the system (5)–(10) gives

ψ̂0γ̂3 = −P̂3, φ̂0γ̂3 = −Q̂3, gy(φ̂0ψ̂3 + ψ̂0φ̂3) + gxγ̂3 = Û3, (16)

where

P̂3 = γ̂2ψ̂1 + γ̂1ψ̂2 − ψ̂1,xy − ψ̂1,t − (ψ̂2gt + ψ̂2,xgy + ψ̂2,ygx + ψ̂2gxy), (17)

Q̂3 = γ̂2φ̂1 + γ̂1φ̂2 − φ̂1,xy + φ̂1,t − (−φ̂2gt + φ̂2,xgy + φ̂2,ygx + φ̂2gxy), (18)

and

Û3 = −[γ̂2,x + (ψ̂2φ̂0 + ψ̂1φ̂1 + ψ̂0φ̂2)y + (ψ̂1φ̂2 + ψ̂2φ̂1)gy]. (19)

From equation (14), we may express ψ̂2 and φ̂2 as a function of γ̂2. Then using equations (13)
and (4), after some tedious calculations, we may find that

φ̂0P̂3 − ψ̂0Q̂3 = 0. (20)

Thus, from equations (16) and (20), one of the variables ψ̂3, φ̂3 and γ̂3 may be arbitrary.
Finally, for k = 4, we may derive

4gxgyψ̂4 − ψ̂0γ̂4 = P̂4,

4gxgyφ̂4 − ψ̂0γ̂4 = Q̂4,

gyφ̂0ψ̂4 + gyψ̂0φ̂4 + gxγ̂4 = Û4/2,

(21)

4



J. Phys. A: Math. Theor. 41 (2008) 135208 B B Thomas et al

with

P̂4 = γ̂3ψ̂1 + γ̂2ψ̂2 + γ̂1ψ̂3 − ψ̂2,xy − ψ̂2,t − 2(ψ̂3gt + ψ̂3,xgy + ψ̂3,ygx + ψ̂3gxy), (22)

Q̂4 = γ̂3φ̂1 + γ̂2φ̂2 + γ̂1φ̂3 − φ̂2,xy + φ̂2,t − 2(φ̂3gt + φ̂3,xgy + φ̂3,ygx + φ̂3gxy), (23)

and

Û4 = −[γ̂3,x + (ψ̂3φ̂0 + ψ̂2φ̂1 + ψ̂1φ̂2 + ψ̂0φ̂3)y + 2(ψ̂3φ̂1 + ψ̂2φ̂2 + ψ̂1φ̂3)gy]. (24)

From equation (16), it is possible to express for example ψ̂3 versus φ̂3 and γ̂3 = −P̂3/ψ̂0.
Besides, from equation (21), we may express ψ̂4 and φ̂4 versus γ̂4. With these results,
we follow the same procedure as previously done for the case k = 3 by replacing
ψ̂4, φ̂4, ψ̂3, γ̂3, ψ̂2, φ̂2, ψ̂1, φ̂1 and γ̂1 into the last equation of the system (21), which after
some tedious calculations, may be satisfied identically. Thus, it comes from equation (21) that
one of ψ̂4, φ̂4 and γ̂4 is arbitrary.

The (2+1)-dimensional CNLERD equation may possess a sufficient number of arbitrary
functions. Therefore, this system is P-integrable. It is well known that the P-analysis may
also be used to obtain other interesting properties [42, 43]. The complete integrability of the
(2+1)-dimensional CNLERD equation may be established if some essential properties such
as BT and Hirota’s bilinearization [53–55] are proved to exist. In the following section, we
may use the truncated P-expansion to derive the BT and Hirota’s bilinearization [53–55] of
the (2+1)-dimensional CNLERD equation.

3. BT and Hirota’s bilinearization properties of the (2+1)-dimensional CNLERD
equation

If we take,

ψ̂k = φ̂k = γ̂k+1 = 0, k � 2, (25)

equation (2) becomes the following truncated expansion

ψ̂ = ψ̂0/g + ψ̂1, φ̂ = φ̂0/g + φ̂1, γ̂ = γ̂0/g
2 + γ̂1/g + γ̂2. (26)

Substituting equation (26) into (1), or rather replacing equation (25) into equations (14)–(24),
we straightforwardly derive

ψ̂0γ̂2 = ψ̂0,t + ψ̂0,xy − ψ̂1γ̂1, φ̂0γ̂2 = −φ̂0,t + φ̂0,xy − φ̂1γ̂1, (27)

and

ψ̂1,t + ψ̂1,xy − γ̂2ψ̂1 = 0, φ̂1,t − φ̂1,xy + γ̂2φ̂1 = 0, γ̂2,x + (φ̂1ψ̂1)y = 0. (28)

From equation (28), it comes that {ψ̂1, φ̂1, γ̂2} is a solution of the (2+1)-dimensional CNLERD
equation. Thus, the truncated expansion (26) may actually be a BT. A seed solution may be
written as follows:

ψ̂1 = φ̂1 = 0, γ̂2 ≡ γ̂2(y, t). (29)

This seed solution may stand for a simple case and may be useful for constructing many other
solutions. For other seed solutions that may be found, many other classes of solutions may be
derived. It is that property of the P-method of constructing various kind of solutions by means
of arbitrary functions that makes it potentially and powerfully underlying. These solutions
may be given by equation (26) expressed in a truncated form. Due to the arbitrariness of
some functions, explicit forms of the solutions may be given, provided to solve analytically or
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numerically some constraint equations written as NLPD equations. Many examples will be
given in the following section while studying the interactions between such structures.

It should be shown that, with the seed solution given by equation (29), the two first
equations of the system (13) may be written in another form as follows:

AV0,x + BV0,y + CV0 = 0, (30)

where V0 = (ψ̂0, φ̂0)
T and

A =
[

2gxgy 0
0 2gxgy

]
, B =

[
g2

x

ψ̂2
0

2
φ̂2

0
2 g2

x

]
, C =

[
2gxgt 0

0 −2gxgt

]
. (31)

Thus, solving equation (30) by means of the characteristics method, it may easily come

V0 = G0

(
x −

∫
dy

A−1B

)
exp

(∫
dx

C−1A

)
, (32)

where G0 may stand for an arbitrary array function of
(
x − ∫ dy

A−1B
)

to be determined.
Now, substituting equations (26) and (29) into equation (1) such that

ψ̂ t = Dtψ̂0 · g

g2
, φ̂t = Dtφ̂0 · g

g2
,

ψ̂xy = DxDyψ̂0 · g

g2
− ψ̂0DxDyg · g

g3
, φ̂xy = DxDyφ̂0 · g

g2
− φ̂0DxDyg · g

g3
,

(ψ̂φ̂)y = Dy(ψ̂0φ̂0) · g

g2
, γ̂x = γ̂2,x +

Dxγ̂1 · g

g2
+

Dxγ̂0 · g

g3
+

γ̂0gx

g3
,

(33)

the Hirota’s bilinear form corresponding to equation (1) may be expressed as follows:

[(Dt + DxDy)ψ̂0 · g − ψ̂0γ̂1]g − (DxDyg · g + γ̂0)ψ̂0 − g2ψ̂0γ̂2 = 0,

[(−Dt + DxDy)φ̂0 · g − φ̂0γ̂1]g − (DxDyg · g + γ̂0)φ̂0 − g2φ̂0γ̂2 = 0,

Dxγ̂0 · g + Dy(ψ̂0φ̂0) · g + gDxγ̂1 · g = γ̂0gx + ψ̂0φ̂0gy.

(34)

We note that the symbols Dx,Dy and Dt denote Hirota’s operators defined by [56, 57]

Dm
t Dn

xD
l
y(G · F) = (∂t − ∂t ′)

m(∂x − ∂x ′)n(∂y − ∂y ′)lG(x, y, t)F (x ′, y ′, t ′)|x=x ′,y=y ′,t=t ′ .

(35)

Equation (34) may be decoupled into the following bilinear equations:

(Dt + DxDy − ν)ψ̂0 · g − ψ̂0γ̂1 = 0,

(−Dt + DxDy − ν)φ̂0 · g − φ̂0γ̂1 = 0,

ν − γ̂2 − µ = 0, γ̂0gx + ψ̂0φ̂0gy = 0,

(DxDy − µ)g · g + γ̂0 = 0, Dxγ̂1 · g + δγ̂0 + �ψ̂0φ̂0 = 0
Dxγ̂0 · g + Dy

(
ψ̂0φ̂0

) · g = δγ̂0g + �ψ̂0φ̂0g,

(36)

where µ, ν, δ and � may stand for arbitrary constants to be determined. In particular, from
equations (26) and (36), it may come

ψ̂φ̂ = gx(DxDy − µ)g · g

gyg2
. (37)

Now, expanding the functions g, ψ̂0, φ̂0, γ̂0, γ̂1 and γ̂2 as power series, and using them in
equation (36), we may construct the N-soliton solutions in the usual way. However, we shall
not follow this route throughout this paper.
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We have checked that the above Hirota’s bilinearization holds good for the previous
truncation. We may now conclude that the (2+1)-dimensional CNLERD equation is completely
integrable. It seems worth investigating the different patterns that may be solutions of this
coupled equation. These solutions may be closely related to the arbitrariness of g and γ̂2 as
we can see from equation (27). In other words, with some suitable choices of g and γ̂2, we
may solve the NLPD equation (27) in other to find ψ̂0 and φ̂0.

Throughout the following sections, we shall pay attention to the quantities |ψ̂φ̂| and γ̂ ,
which may be expressed as follows:

|ψ̂φ̂| = 2(∂x ln|g|)2, γ̂ = γ̂2 − DxDyg · g

g2
, (38)

derived from equations (4), (26) and (29). It seems worth noting that this expression of γ̂

may be related to the universal formula of the MLVSA method [38]. In fact, from a seed
solution to equation (28), as given by equation (29), it may easily be seen that this solution
may not depend on whether γ̂1 is different to zero or not. Thus, if γ̂1 = 0, then, from the
third equation of the system (13), it may come gx,y = 0 which shows that g may be the sum
of two arbitrary functions g1 ≡ g1(x, t) and g2 ≡ g2(y, t). Now, considering instead the
case where γ̂1 �= 0, and searching for a class of solutions generalizing the previous ones such
that γ̂1 = f̂1(x, t)f̂2(y, t) with f̂1(x, t) and f̂2(y, t) being arbitrary functions, from the third
equation of the system (13), the function g may be expressed as follows:

g = a0 + a1p + a2q + a3pq, (39)

where p = p(x, t) and q = q(y, t) may stand for arbitrary functions and the parameters ai

(i = 0, 1, 2, 3) being arbitrary constants. With the above form of g given by equation (39), we
may combine the two equations (27) and (32) in order to get a nonlinear system in terms of G0

and γ̂2 which may be solved analytically or numerically to determine G0 with respect to some
arbitrary expressions of γ̂2. For simplicity, it may be interesting to take γ̂2 = 0 as considered in
the following section while investigating the scattering behavior of some localized excitations.

4. Scattering behavior: elastic and nonelastic interaction

First of all, it seems important to present the asymptotic behavior of the localized excitations
produced from equations (38) and (39).

Recently, Tang et al [49] have studied the elastic and nonelastic interaction between
saddle-type ring solitons and peakons. Also, Lou [41] has proposed a method to construct
compact solitary waves and compactons on the basis of the universal formula from the MLVSA
method, and this method has been extended to generate (2+1)-dimensional solitary waves and
solitons namely plateau-type, basin-type and bowl-type ring solitons for the (2+1)-dimensional
sine-Gordon equation [58]. Besides, Tang and Lou [59] have provided an interesting way for
construction of foldons (folded solitary waves with solitonic properties).

We may assume that Fi(ωi) ≡ Fi(ξ − vit) ≡ ∫
Pidx|ωi→±∞ → F±

i and ωi invariant as
t → ∞. We consider that q and ai (i = 0, . . . , 3) are time independent. At the ith excitation,
the interaction properties among the localized excitations may be described by the following
equations:

γ̂t→∓∞ →
N∑

i=1

2
Ai

(a0 + a2q(y) + [a1 + a3q(y)][Fi(ωi) + �∓
i ])2

|ψ̂φ̂|t→∓∞ →
N∑

i=1

2

[
Pi(ωi)(a1 + a3q(y))

a0 + a2q(y) + [a1 + a3q(y)]
[
Fi(ωi) + �∓

i

]
]2

x|t→∓∞ → ξ + �∓
i + Xi(ξ − vit),

(40)
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where

Ai = [
(a1 + a3q)

(
a2 + a3

[
Fi(ωi) + �∓

i

])
× (

a0 + a2q + [a1 + a3q(y)]
[
Fi(ωi) + �∓

i

]) − a3
]
qyPi(ωi)

�∓
i =

∑
j<i

F∓
j +

∑
j>i

F∓
j , �∓

i =
∑
j<i

G∓
j +

∑
j>i

G∓
j .

(41)

Thus, the ith excitation preserves its shape if �+
i = �−

i and its total phase shift is �+
i − �−

i .
Therefore, in order to construct completely elastic interaction properties, it is suggested to
select suitable localized functions Fi (and then Pi) such that �+

i = �−
i (i = 1, . . . , N).

Multiple (2+1)-dimensional localized solitonic excitations with completely elastic interaction
properties may then be built-up from the (1+1)-dimensional multiple localized excitations,
provided the above properties are observed. For example, we may derive multiple folded
solitary waves (�+

i �= �−
i , at least for one i) or multiple foldons (�+

i = �−
i for all i) from the

(1+1)-dimensional localized multivalued functions generating loop solitons [60–68].
As illustrations, we may consider interactions among typical peakons and bubbles, saddle-

type ring solitons and compactons. As a result, it is found that depending on some suitable
choices of p and q, these interactions may be elastic or inelastic. Thus, in figures 1 and 2, we
consider this general setting

px = a sech2(ξ) + b sech2(ξ − vt), x = ξ + α tanh(ξ) + β tanh(ξ − vt)

qy = sech2(η), y = η + c tanh(η),
(42)

where a, b, c, α and β are arbitrary constants. According to their different values, we
may construct elastic interaction between bubbles (or foldons), peakons, bell-like solitons,
just to name a few. In figure 1, the two initial bubbles whose crests are localized at
(x = −5.725, y = 0, γ̂ = 0.001 14) and (x = 0.5, y = 0, γ̂ = 0.001 679) interact elastically
in such a way that they overlap three times before being shifted. The same observation is
made for the peakons and bell-like semi-foldons depicted in figure 2.

More investigations may also be made on other type of solitons. Thus, in figure 3 we
have studied the scattering between two single saddle rings given by γ̂ , and also scattering
between another typical duck-beak solitons given by |ψ̂φ̂|. The detail is given in the caption
of figure 3. We may observe that these structures retain their shape after interaction in such a
way that the interactions between these structures are clearly elastic. We also consider another
typical peakons. The detail on this localized excitation is provided in the caption of figure 4.
As a result, the initial peakons interact elastically such that after the interaction, they retain
their initial shapes. However, there is some strange phenomenon which occurs when, before
the scattering, the previous peakons initially exchange their initial position. Indeed, the small
peakon located at (x = −5, y = 0) interacts attractively with the large one located at (x = 15,

y = 0) such that before the scattering, the two structures maintain their initial properties
(shapes, velocities, etc). During the head-on, they overlap together to a single peakon
and after the interaction, the amplitude of the small peakon is considerably mitigated on
contrary to the large peakon. This situation may lead to a further disappearance of the small
peakon. This phenomenon may be worth investigating in many systems since applications
may be found in many fields such as biology with gene transmissions, chemistry with ion
motions and dynamic changes of color of solutions, physics with nonlinear optics and soliton
theory.

8
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Figure 1. Typical bubble depicted by γ̂ under the following selection: a = 0.8, b = 0.5, c = −2,

α = −1.5, β = −1.5, v = 0.25, a0 = 20, a1 = 1, a2 = 1, a3 = 1/35 and γ̂2 = 0. The plots are
depicted from upper panel to lower panel of the figure at times t = −25, t = −16, t = −8, t =
−4, t = 0, t = 8, t = 16 and t = 25.
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Figure 2. Elastic interaction among typical peakon and bell-like semifoldons depicted by γ̂ and
|ψ̂φ̂| at times t = −25 and t = 25 under the following selection: in the case of peakon semi-foldon
(the upper four panels), a = 0.8, b = 0.5, c = −2, α = −1, β = −1, v = 0.25, a0 = 20, a1 =
1, a2 = 1, a3 = 1/35 and γ̂2 = 0. In the case of bell-like semifoldon (the lower four panels),
a = 0.8, b = 0.5, c = −2, α = −1.5, β = −1.5, v = 0.25, a0 = 20, a1 = 1, a2 = 1, a3 = 1/35
and γ̂2 = 0.
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Figure 3. Elastic interaction among typical saddle ring and duck-beak-type solutions depicted
by γ̂ and |ψ̂φ̂|, respectively, at times t = −0.1, t = 0.1, t = 0.3 and t = 0.6 under the
following selection: p = exp[−(4(x−20t)/5)2 +15]/5+exp[−3/5(x +20t −19/2)2 +17]/5, q =
exp(−y2)/5 + exp[(y − 8/3)2]. a0 = a1 = a2 = 1, a3 = 0 and γ̂2 = 0.
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Figure 4. Elastic interaction among typical peakons depicted by γ̂ and |ψ̂φ̂| under the following
selection: p1x = 1/ sinh(−|1 − x + t |), p2x = 1/ sinh(−|1 − x + t |) such that px = p1x + p2x and
qy = 1/ sinh(−|1 − y|). a0 = 1, a1 = 1, a2 = 1, a3 = 1/9 and γ̂2 = 0. The plots are depicted
from upper stage to lower stage of the figure at times t = −5, t = −3, t = 0 and t = 5.
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Figure 5. Elastic interaction among typical compactons depicted by γ̂ and |ψ̂φ̂| under the
following selection: R

p

1 (ϕ1) = −2 cos5(ϕ1), R
p

2 (ϕ2) = − cos5(ϕ2) and Rq(φ) = cos5(φ) with
ϕ1 = x − t, ϕ2 = x + 2t, φ = y, ϕ11 = ϕ12 = φ1 = −π/2, and ϕ21 = ϕ22 = φ2 = π/2.
a0 = 17, a1 = 1, a2 = 1, a3 = 1/14 and γ̂2 = 0. The plots are depicted from upper stage to lower
stage of the figure at times t = −3, t = −1.5, t = 0 and t = 3.
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Figure 6. Inelastic interaction among some typical compactons depicted by γ̂ and |ψ̂φ̂| under the
following selection: R

p

1 (ϕ1) = −2 sin(ϕ1) − 2, R
p

2 (ϕ2) = − sin(ϕ2) − 1 and Rq(φ) = sin(φ) + 1
with ϕ1 = x − t, ϕ2 = x + 2t, φ = y, ϕ11 = ϕ12 = φ1 = −π/2, and ϕ21 = ϕ22 = φ2 = π/2.
a0 = 17, a1 = 1, a2 = 1, a3 = 1/14 and γ̂2 = 0. The plots are depicted from upper stage to lower
stage of the figure at times t = −3, t = 0 and t = 3.

Another interesting excitation is the compactons which may be derived from the following
equation [69]

p =
M∑
i=1

⎧⎪⎨
⎪⎩

0, ϕi � ϕ1i ,

R
p

i (ϕi) − R
p

i (ϕ1i ), ϕ1i < ϕ2i ,

R
p

i (ϕ2i ) − R
p

i (ϕ1i ), ϕ2i < ϕi,

q =
N∑

i=1

⎧⎪⎨
⎪⎩

0, φi � φ1i ,

R
q

i (φi) − R
q

i (φ1i ), φ1i < φ2i ,

R
q

i (φ2i ) − R
q

i (φ1i ), φ2i < φi,

(43)
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where ϕi = x − ci t (i = 1, . . . ,M) and φi = y − vit (i = 1, . . . ,M), ci and vi being arbitrary
constants standing for velocities of waves. R

p

i (ϕi)(i = 1, . . . ,M) and R
q

i (φi)(j = 1, . . . , N)

may be differentiable functions yielding many kind of (2+1)-dimensional compactons. In
general, interaction among compactons may be elastic or not [41]. We try to see whether
this remark still applies to our system under investigation. We then consider two kinds of
compactons. The interaction among the first kind is clearly shown in figure 5 where detail
is provided in the caption. The interaction is utterly elastic in such a way that the two
initial structures retain their shapes after scattering. The second kind of compactons may be
given by R

p

1 (ϕ1) = −2 sin(ϕ1) − 2, R
p

2 (ϕ2) = − sin(ϕ2) − 1 and Rq(φ) = sin(φ) + 1 with
ϕ1 = x − t, ϕ2 = x + 2t, φ = y, ϕ11 = ϕ12 = φ1 = −π/2, and ϕ21 = ϕ22 = φ2 = π/2.
a0 = 17, a1 = 1, a2 = 1, a3 = 1/14 and γ̂2 = 0. As it may be observed in figure 6, the two
initial structures interact inelastically in such a way that there is an exchange of amplitudes
leading to a decrease of the amplitude of the small structure.

5. Summary

In this paper, we have investigated the P-property of the (2+1)-dimensional CNLERD equation
and proved that it is completely integrable. For the existence of the abundant structures
of (2+1)-dimensional CNLERD equation, it is quite important but difficult to investigate
the interaction properties for all the possible localized excitations. We have presented the
interactions of some special types of localized traveling excitations such as saddle ring
solitons, duck-beak solitons, peakons, semifoldons, foldons and compactons. For the ring
and duck-beak solitons, during the scattering, the two structures pass through each other and
completely preserve their shapes, velocities and phases. Thus, they interact elastically. The
same phenomenon is witnessed in the case of semifoldons, foldons such as bubbles. For the
traveling peakons, there may exist some types which during the elastic interaction process,
the peakons completely exchange their shapes (see figure 4). This kind of peakons is derived
from piecewise functions. However, when the initial positions of the small and large peakons
are interchanged, the interaction becomes nonelastic owing to the considerable decrease of the
amplitude of the small peakon after interactions. For the traveling compactons, the interactions
may be elastic as previously observed in the case of ring solitons. Since we may construct a
rich variety of compactons from piecewise functions, some types may be found which may
not interact elastically. For the foldons (say bubbles), the interaction process has a particular
feature. Indeed, during the interactions, the initial bubbles attract each other and overlap three
times before being shifted with preserved shapes. It is important to mention here that if a
NLPD equation possesses soliton-like solutions, then there may not be any doubt concerning its
integrability. Nonetheless, all integrable NLPD equations may not possess solitonic structures
even though, due to their integrability properties, they may possess an infinite number of
conserved quantities [41, 69–72].

Moreover, there is still too much to deal with interactions in (2+1)-dimensional systems.
Thanks to the arbitrariness of p(x, t) and q(y, t). We consider the following system expressing
p and q such that

p = α tanh(k1x + ω1t) + β tanh3(k2x + ω2t)/2, q = γ tanh(k3y), (44)

which in fact, has been recently investigated by Radha and Lou [73] in the (2+1)-dimensional
generalized Sasa–Satsuma equation. From these studies, it has been pointed out inelastic
interaction among multiple dromion solutions. In fact, when the amplitude of one of the
dromions is relatively small before the scattering takes place, the inelastic interactions may
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be considered as approximate dromion fission and the amplitude of the split dromions
is the same as that of the original one. This phenomenon has also been witnessed
in the (2+1)-dimensional CNLERD equation through two typical solitons, the previous
dromions described by γ̂ and a sech-like soliton described by |ψ̂φ̂|, with the following
parameters: α = 18, β = 1/2, γ = 1/3, k1 = 1/2, k2 = 1, k3 = 1/3, ω1 = −2 and
ω2 = 2 with a0 = 20, a1 = 1, a2 = 1, a3 = 1/50 and γ̂2 = 0. Further, when the
amplitude of the dromions is relatively small after interaction, then the inelastic interaction
is considered as approximate dromion fusion such that the velocity of the fused dromion
is the same as that of one of the original dromions. The same phenomenon also occurs in
the (2+1)-dimensional CNLERD equation while trying instead the following parameters:
α = 1/2, β = 18, γ = 1, k1 = 1, k2 = 2, k3 = 1/2, ω1 = 2 and ω2 = −2 with
a0 = 20, a1 = 1, a2 = 1, a3 = 1/50 and γ̂2 = 0. For some convenience, these plots
have not been depicted in this paper, but are worth noting in the area of survey of different
types of scattering phenomena among such topological structures. It may be worthy to
mention that not only localized excitations found in this paper are solutions of the (2+1)-
dimensional CNLERD, but periodic waves may also be found. Thus, further interests may
be paid on such structures. Although the standard WTC’s P-expansion method used in this
paper may stand for a powerful method among other techniques in investigating integrability
properties and in finding some exact solutions to nonlinear systems, it may not be possible
to find some physically significant nonsingular localized solutions to some model systems.
Thus, Conte [74] has developed an alternative P-analysis approach, the invariant P-analysis
for such models. A modification of the truncated Conte’s expansion has been presented by
Pickering [75, 76], and generalized further by Lou [77–79]. He has shown that the standard
and nonstandard truncations of the generalized P-expansion may lead to the construction of
new explicit exact solutions. It seems interesting to investigate this generalized method to
the (2+1)-dimensional CNLERD equation in a further interest and depict more physically
significant solutions.

Acknowledgments

The authors would like to express their sincere thanks to the referees for their critical comments
and appropriate suggestions which have made this paper more precise and readable.

References

[1] Dolan L 1997 Nucl. Phys. B 489 245
[2] Distler J and Hanany A 1997 Nucl. Phys. B 496 75
[3] Ellis J, Maoromatos N E and Nanopoulos D V 1997 Int. J. Mod. Phys. A 12 2639
[4] Loutsenko I and Roubtsov 1997 Phys. Rev. Lett. 78 3011
[5] Coffey M W 1996 Phys. Rev. B 54 1279
[6] Siddhartham R and Shastry B S 1997 Phys. Rev. B 55 12196
[7] Das G C 1997 Phys. Plasma 4 2095
[8] Gedalin M, Scott T C and Band Y B 1997 Phys. Rev. Lett. 78 448
[9] Georges T 1997 Opt. Lett. 22 679

[10] Weigel H, Gamberg L and Reinhardt 1997 Phys. Rev. D 55 6910
[11] Konopenlcnenko B, Sidorenko J and Strampp W 1983 Nonlinear Systems-Classical and Quantum Theory

ed M Jimbo and T Miwa (Singapore: World Scientific)
[12] Cao C W 1987 Henan Sci. 5 1
[13] Cao C W and Geng X G 1990 J. Phys. A: Math. Gen. 23 4117
[14] Zeng Y B and Li Y S 1989 J. Math. Phys. 30 1617
[15] Zeng Y B 1991 Phys. Lett. A 160 541

16

http://dx.doi.org/10.1016/S0550-3213(97)00003-5
http://dx.doi.org/10.1016/S0550-3213(97)00046-1
http://dx.doi.org/10.1142/S0217751X97001481
http://dx.doi.org/10.1103/PhysRevLett.78.3011
http://dx.doi.org/10.1103/PhysRevB.54.1279
http://dx.doi.org/10.1103/PhysRevB.55.12196
http://dx.doi.org/10.1063/1.872545
http://dx.doi.org/10.1103/PhysRevLett.78.448
http://dx.doi.org/10.1088/0305-4470/23/18/017
http://dx.doi.org/10.1063/1.528253
http://dx.doi.org/10.1016/0375-9601(91)91065-L


J. Phys. A: Math. Theor. 41 (2008) 135208 B B Thomas et al

[16] Tu G Z 1989 J. Math. Phys. 30 330
[17] Konopenlcnenko B, Sidorenko J and Strampp W 1991 Phys. Lett. A 157 17
[18] Cheng Y and Li Y S 1991 Phys. Lett. A 157 22
[19] Cheng Y and Li Y S 1992 J. Phys. A: Math. Gen. 25 419
[20] Calogero F and Eckhaus 1988 Inverse Problems 3 229
[21] Calogero F, Degasperis A and Ji X D 1988 J. Math. Phys. 41 6399
[22] Maccari A 1996 J. Math. Phys. 37 6207
[23] Maccari A 1998 Int. J. Nonlinear Mech. 33 713
[24] Lou S Y 1997 Sci. China 40 1317
[25] Yu J and Lou S Y 2000 Sci. China 43 655
[26] Lou S Y, Yu J and Tang X Y 2000 Z. Naturforsch 55 867
[27] Lin J 1996 Commun. Theor. Phys. 25 447
[28] Lou S Y, Lin J and Yu J 1995 Phys. Lett. A 201 47
[29] Lin J, Lou S Y and Wang K L 2000 Z. Naturforsch 55 589
[30] Lou S Y 1998 Phys. Rev. Lett. 80 5027
[31] Lou S Y 1998 J. Math. Phys. 39 2112
[32] Lou S Y and Xu J J 1998 J. Math. Phys. 80 5364
[33] Lou S Y 1997 Commun. Theor. Phys. 27 249
[34] Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1
[35] Zhai Y, Albeverio S, Zhao W Z and Wu K 2006 J. Phys. A: Math. Gen. 39 2117
[36] Bountis T C, Vapageorgiou V and Winternitz P 1986 J. Math. Phys. 27 1215
[37] Dai C Q and Ni Y Z 2006 Phys. Scr. 74 584
[38] Tang X Y and Lou S Y 2003 J. Math. Phys. 44 4000
[39] Ruan H Y and Chen Y X 2001 Acta Phys. Sin. 4 586
[40] Boiti M, Leon J J and Pempinelli F 1987 Inverse Problems 3 371
[41] Lou S Y 2002 J. Phys. A: Math. Gen. 35 10619
[42] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522
[43] Weiss J, Tabor M and Carnevale G 1984 J. Math. Phys. 25 13
[44] Yomba E, Kofane T C and Pelap F B 1996 J. Phys. Soc. Japan 65 2337
[45] Yomba E and Kofane T C 2000 J. Phys. Soc. Japan 69 1027
[46] Yomba E and Kofane T C 1999 Physica D 125 105
[47] Yomba E and Kofane T C 1996 Phys. Scr. 54 576
[48] Cariello F and Tabor M 1989 Physica D 39 77
[49] Tang X Y, Lou S Y and Zhang Y 2002 Phys. Rev. E 66 046601
[50] Bai C L and Zhao H 2006 J. Phys. A: Math. Gen. 39 3283
[51] Myrzakulov R, Nugmanova G N and Syzdykova R N 1998 J. Phys. A: Math. Gen. 31 9535
[52] Duan X J, Deng M, Zhao W Z and Wu K 2007 J. Phys. A: Math. Theor. 40 3831
[53] Hirota R 1980 Direct methods in soliton theory Soliton ed R K Bullough and P J Caudrey (Berlin: Springer)
[54] Hirota R 1974 Prog. Theor. Phys. 52 1498
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